Bahri Uzunoglu

Senior Lecturer/Associate Professor at Department of Electrical Engineering, Division of Electricity

+4618-471 5831
Mobile phone:
+46 73 4606585
Visiting address:
Ångströmlaboratoriet, Lägerhyddsvägen 1
752 37 Uppsala
Postal address:
Box 65
751 03 UPPSALA

Short presentation

My research provides solutions through the development, implementation, testing, and application of algorithms and software used to solve large-scale scientific and engineering problems in the renewable energy industry. The aim is to provide innovative products in renewable energy. I am primarily interested in developing knowledge and tools for the area of Computational and data-enabled science and engineering in energy systems theme that I lead. My courses 1EL306, 1TE733, 1DL360, 1DL370,1DL460.

Academic merits: Docent in Engineering Science with Specialization in the Science of Electricity

  • Uppsala University, Sweden -- Division of Electricity, Associate professor (docent) in engineering sciences with specialization in science of electricity in direction of computational methods (Current English)
  • Uppsala University, Sweden -- Division of Electricity, Associate professor (docent) in engineering physics with specialization in science of electricity (Current Swedish)
  • Uppsala University, Sweden -- Division of Electricity, Senior Lecturer (Current)
  • Department of Mathematics, Florida State University (2015-Current). Research Faculty.
  • Division of Earth Sciences, Senior Lecturer of Energy Technology (2012 -- 2013); Program responsible for MSc in Wind Power Project Management (July 2010 -- July 2012).
  • FPL, USA -- Full-time, NextEra™ Energy Resources (formerly FPL Energy),
  • Part-time, Florida State University (FSU), School of Computational Science (2007 September -- 2008 January 6th).
  • Florida State University -- School of Computational Science, (2004 -- 2007).
  • German Aerospace Centre (DLR), Germany -- Junior Scientist (2001 -- 2004).
  • University of Liverpool, UK Department of Electrical Engineering and Electronics (2001).
  • University of Southampton, Southampton PhD, Computational Engineering


My research is focused for all three weather-driven resources wind, solar, and marine. Using environmental prediction systems that incorporate computing technologies and proprietary methodologies, the aim is to deliver products for relevant, accurate, and critical information necessary for effectively siting, developing, and operating renewable energy projects.


İsmail ALKIŞ (PhD Student)

Serdal ÖZÇELİK (PhD Student)



This blog provides information about wind measurement database created for EU WINDUR PROJECT

The small scale wind turbines mainly corresponds to turbines installed in rural and isolated areas. As 80 % of European population lives in cities and the EU Directive 2010/31/EU on Energy Performance of Buildings requires that “Member States shall ensure that by 31 December 2020 all new buildings are nearly zero-energy buildings”. This is a commercial opportunity that also provides a motivation to investigate technical challenges related to the peculiarities of urban wind regime. Urban wind resource assessment for small scale wind applications presents several challenges and complexities that are different from large-scale wind power generation. Urban boundary layers relevant to this kind of flows have different horizontal profiles impacted by the buildings, low speed wind regimes, separation and different turbulence characteristics. In order to have better insight into the physics of the urban wind turbines, European Framework project with acronym WINDUR has been undertaken. The results of this measurement campaign for this project is presented below.

Download the report.

Wind measurement database

Please contact the directory administrator for the organization (department or similar) to correct possible errors in the information.

Bahri Uzunoglu