Peter Oppeneer
Professor i fysik, ssk teoretisk magnetism vid Institutionen för fysik och astronomi, Materialteori
- E-post:
- peter.oppeneer[AT-tecken]physics.uu.se
- Telefon:
- 018-471 3748
- Mobiltelefon:
- 070-9604016
- Besöksadress:
- Rum
13137 Ångströmlaboratoriet, Lägerhyddsvägen 1
- Postadress:
- Box 516
751 20 UPPSALA
The research group of Prof. Peter Oppeneer focuses on several topics in theoretical condensed matter theory. Our main topics include development of theory for femtosecond magnetism, for unconventional forms of superconductivity and for hidden order parameters, as well as computational theory for molecular spintronics and spin-crossover materials. Specifically, we address femtosecond coherent light-induced magnetic processes, such as ultrafast demagnetization, magnetization switching and ultrafast light imparted magnetization. We develop theory to describe ultrafast spin dissipation channels, such as superdiffusion and Elliott-Yafet electron-phonon spin-flip scattering, and we develop computer codes for numerical simulations of these processes in real materials. We also perform ab initio studies of unconventional forms of superconductivity in real materials, as odd-frequency and spin triplet superconductivity, using our home-made self-consistent multiband Eliashberg code. Another area of our interest is theory of hidden order and multipolar magnetic order, in correlated materials as URu2Si2 and UO2 and NpO2. Other strongly correlated electron systems we have investigated with our own dynamical mean field theory (DMFT) code. Our aim is to combine advancement of analytical theory hand-in-hand with development of numerical simulation codes.
Research - Some press releases
- Ultrafast decoupling of intra-atomic exchange interaction
- A step forward for ultrafast spintronics
- Now can magnetism be measured with nanoscale precision
- Molecular spintronics with graphene: the best of both worlds?
- On the origin of ultrafast demagnetization
- A new perspective for molecular spintronics
Research Interests
- Theory of ultrafast laser-induced demagnetization and spin reversal
- Ab initio theory of Elliott-Yafet electron-phonon spin-flip scattering
- Ab initio theory of Hidden Order and of multipolar ordering
- Computational theory of unconventional superconductivity
- First-principles theory of X-ray magnetic and magneto-optical spectroscopies (XMCD, XMLD, magneto-optical Kerr effect, Faraday & Schäfer-Hubert effect)
- Ab initio theory of on-surface magnetochemistry of spin-bearing metalorganic molecules
- Computational theory of spin-crossover molecular materials
- Electronic structure theory of strongly correlated electron systems with DMFT
- Materials modeling for oxidation/reduction reactions at nuclear fuel surfaces
- Magnetic model Hamiltonians, exchange interactions & spin-dynamics
Selected Publications
Frietsch, Bowlan, Carley, Teichmann, Wienholdt, Hinzke, Nowak, Carva, Oppeneer, and Weinelt, Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal. Nature Communications 6, 8262 (2015)
Magnani, Caciuffo, Wilhelm, Colineau, Eloirdi, Griveau, Rusz, Oppeneer, Rogalev, and Lander, Magnetic polarization of the J=0 ground state in AmFe2. Physical Review Letters 114, 097203 (2015)
Muto, Rusz, Tatsumi, Adam, Arai, Kocevski, Oppeneer, Bürgler, and Schneider, Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism. Nature Communications 5, 4138 (2014)
Ballav, Wäckerlin, Siewert, Oppeneer, and Jung, Emergence of on-surface magnetochemistry, Journal of Physical Chemistry Letters 4, 2303 (2013)
Hermanns, Tarafder, Bernien, Krüger, Chang, Oppeneer, and Kuch, Magnetic coupling of porphyrin molecules through graphene. Advanced Materials 25, 3473 (2013)
Kampfrath, Battiato, Maldonado, Eilers, Nötzold, Radu, Freimuth, Mokrousov, Blügel, Wolf, Oppeneer, and Münzenberg, Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotechnology 8, 256 (2013)
Eschenlohr, Battiato, Maldonado, Pontius, Kachel, Holldack, Mitzner, Föhlisch, Oppeneer, and Stamm, Ultrafast spin transport as key to femtosecond demagnetization, Nature Materials 12, 322 (2013)
Tarafder, Kanungo, Oppeneer, and Saha-Dasgupta, Pressure and Temperature Control of Spin-switchable Metal-organic Coordination Polymers from Ab Initio Calculations, Physical Review Letters 109, 077203 (2012)
Rudolf, La-O-Vorakiat, Battiato, Adam, Shaw, Turgut, Maldonado, Mathias, Grychtol, Nembach, Silva, Aeschlimann, Kapteyn, Murnane, Schneider, and Oppeneer, Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Communications 3, 1037 (2012)
Mydosh and Oppeneer, Hidden Order, Superconductivity, and Magnetism – The Unsolved Case of URu2Si2. Reviews of Modern Physics 83, 1301 (2011)
Carva, Battiatio, and Oppeneer, Is the controversy over femtosecond magneto-optics really solved? Nature Physics 7, 665 (2011)
Oppeneer, Rusz, Elgazzar, Suzuki, Durakiewicz, and Mydosh, Electronic structure theory of the hidden order material URu2Si2. Physical Review B 82, 205103 (2010)
Battiato, Carva, and Oppeneer, Superdiffusive Spin-Transport as a Mechanism of Ultrafast Demagnetization. Physical Review Letters 105, 027203 (2010)
Elgazzar, Rusz, Amft, Oppeneer, and Mydosh, Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Materials 8, 337 (2009)
Hild, Maul, Schönhense, Elmers, Amft, and Oppeneer, Magnetic circular dichroism in two-photon photoemission. Physical Review Letters 102, 057207 (2009)
Kontakta katalogansvarig vid den aktuella organisationen (institution eller motsv.) för att rätta ev. felaktigheter.